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Abstract. Index plays a very important role in cloud storage systems,
which can support efficient querying tasks for data-intensive applica-
tions. However, most of existing indexing schemes for data centers focus
on one specific topology and cannot be migrated directly to the other
networks. In this paper, based on the observation that server-centric data
center networks (DCNs) are recursively defined, we propose pattern vec-
tor, which can formulate the server-centric topologies more generally and
design R2-Tree, a scalable two-layer indexing scheme with a local R-Tree
and a global R-Tree to support multi-dimensional query. To show the ef-
ficiency of R2-Tree, we start from a case study for two-dimensional data.
We use a layered global index to reduce the query scale by hierarchy and
design a method called Mutex Particle Function (MPF) to determine
the potential indexing range. MPF helps to balance the workload and
reduce routing cost greatly. Then, we extend R2-Tree indexing scheme
to handle high-dimensional data query efficiently based on the topology
feature. Finally, we demonstrate the superior performance of R2-Tree in
three typical server-centric DCNs on Amazon’s EC2 platform and vali-
date its efficiency.
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1 Introduction

Nowadays, cloud storage systems such as Google’s GFS [7], Amazon’s Dynamo [4],
Facebook’s Cassandra [2], have been widely used to support data-intensive ap-
plications that require PB-scale or even EB-scale data storage across thousands
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of servers. However, most of the existing indexing schemes for cloud storage
systems do not support multi-dimensional query well.

To settle this problem, a load balancing two-layer indexing framework was
proposed in [18]. In two-layer indexing scheme, each server will: (1) build indexes
in its local layer for the data stored in it, and (2) maintain part of global indexing
information which is published by the other servers from their local data.

Based on the two-layer indexing framework, many efforts focus on how to
divide the potential indexing range and how to reduce the searching cost. Early
researches are mainly focused on Peer-to-Peer (P2P) networks such as RT-
CAN [17], while later researches gradually turn to data center networks (DCNs)
such as FT-INDEX [6], RT-HCN [12], etc. However, most of researches only
focus on one specific network. The design lacks expandability and usually only
suits one kind of network. Due to the differences in topology, it is always hard
to migrate a specific indexing scheme from one network to another.

In this paper, we first propose a pattern vector P to formulate the topologies.
Most of the server-centric DCN topologies are recursively defined and a high-level
structure is scaled out from several low-level structures by connecting them in a
well-defined manner. Pattern vector fully exploits the hierarchical feature of the
topology by using several parameters to represent the expanding method. The
raise of the pattern vector makes the migration of the indexing scheme feasible
and is the cornerstone of generalization.

Then we introduce a more scalable two-layer indexing scheme for the server-
centric DCNs based on P . We design a novel indexing scheme called R2-Tree
where a local R-Tree is used to support query for multi-dimensional local data
and a global R-Tree helps to speed up the query for global information. We
start from two-dimensional indexing. We reduce the query scale by hierarchy
through building global indexes with a layered structure. The hierarchical de-
sign prevents repeated query process and achieve better storage efficiency. We
also propose a method called Mutex Particle Function (MPF) to disperse the
indexing range and balance the workload. Furthermore, we extend R2-Tree to
high-dimensional data space. Based on the hierarchy feature of the topology, we
assign each level of the topology to be responsible for one dimension of the data.
To handle data whose dimension is higher than the levels of the topology, we
use Principal Component Analysis (PCA) to reduce the dimension. Besides, we
design a mapping algorithm to select the nodes in local R-trees as public indexes
and publish them on the global R-Trees of corresponding servers.

We evaluate the performance of range and point query for R2-Tree on Ama-
zon’s EC2. We build two-layer indexes on 3 typical server-centric DCNs: DCell [10],
Ficonn [13], HCN [11] with both two-dimensional and high-dimensional data
and evaluate the query performance. Besides, by comparing the query time with
RT-HCN [12], we show the technical advancement of our design.

The rest of the paper is organized as follows. The related work will be in-
troduced in Sect. 2. Section 3 introduces the pattern vector to generalize the
server-centric architectures. We elaborate the procedure of building two-layer
index and the algorithm in Sect. 4 and depict the query processing in Sect. 5.
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Section 6 exhibits the experiments and the performance of our scheme. Finally,
we draw a conclusion of this paper in Sect. 7.

2 Related Work

Data Center Network. Our work aims to construct a scalable, load-balance,
and multi-dimensional two-layer indexing on data center networks (DCNs). The
underlying topologies of DCN can be roughly separated into two categories. One
is the tree-like switch-centric topologies where switches are used for interconnec-
tion and routing like the Fat-Tree [1], VL2 [8], Aspen Tree [16], etc. The other
one is the server-centric topology, in which the servers are not only used to store
the data, but also perform the interconnecting and routing function. Typical
server-centric topologies include data centers such as HCN [11], DCell [10], Fi-
Conn [13], Dpillar [14], and BCube [9]. Server-centric architectures are mostly
recursively defined structures. Our work exploits this hierarchical feature and
put forward a pattern vector which can generalize the server-centric topologies.

Two-Layer Indexing. Two-layer indexing [18] maintains two index layers
called local layer and global layer to increase parallelism and support efficient
query for different data attributes. Given a query, the server will first search its
global index to locate the servers which may store the data and then forward
the query. The servers which receive the forwarded query will search their local
index to retrieve the queried data. Early two-layer index works focus on P2P
network, like RT-CAN [17] and the DBMS-like indexes [3]. Subsequently with
the rapid development of DCNs, a universal U2-Tree [15] is proposed for switch-
centric DCNs. Apart from that, RT-HCN [12] for HCN and an indexing scheme
for multi-dimensional data for BCube [5] are both efficient indexing schemes
for server-centric DCNs. Their works are mostly confined to a certain topology.
With the generalized pattern vector, we design a highly extendable and flexible
indexing scheme which can suit most of the server-centric DCNs.

3 Recursively Defined Data Center

Server-centric DCN topologies have a high degree of scalability, symmetry, and
uniformity. Most of the server-centric DCNs are recursively defined, which means
that a high-level structure grows from a fixed number of low-level structures re-
cursively. This kind of topologies has a favorable feature to design layered global
index. However, due to the diversity of different kinds of topologies, with differ-
ent number of Network Interface Card (NIC) ports for switches and connection
methods, it is hard to migrate a specific indexing scheme from one topology
to another. Thus, finding a general pattern for server-centric topologies is of
great significance for constructing a scalable indexing scheme. We observe that
the scaling out of the topology obeys some certain rules. The ratio of available
servers which are actually used for expansion is fixed for every specific topology.
In this section, we propose a pattern vector P to as a high-level representation to
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Table 1. Symbol Description

Sym. Description Sym. Description

h Total height of the structure nai Number of servers available to expand
k Port number of mini-switch nui Number of servers actually used to expand
α Expansion factor (≤ 1) pirj potential indexing range of server j
β Connection method denoter gi Number of STi−1 in STi (g0=1)
STi A level-i structure qi Position of the meta-block in level-i
mbr Minimum bounding rectangle ai Position of the server in level-i

formulate the topologies. For clarity, we summarize the symbols in Table 1. Be-
sides, we also show in Fig. 1 some typical server-centric topologies with the given
pattern definition, including HCN [11], DCell [10], Ficonn [13] and BCube [5].

HCN0 HCN1

HCN2

Server

Switch

Basic block

(a) HCN2, P = 〈4, 2, 3
4
, 0〉

Dcell1

Dcell0

Dcell2

Server

Switch

(b) DCell2, P = 〈4, 2, 1, 0〉

Ficonn0

Ficonn1

Ficonn2
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Switch

(c) Ficonn2, P = 〈4, 2, 1
2
, 0〉

BCube1

BCube2

BCube0

Server

Switch

[0, 0, 0] [0, 2, 0][0, 1, 0] [0, 3, 0]

[1, 0] [1,1] [1,2] [1,3]

[2,0] [2,1] [2,2] [2,3] [2,15]

(d) BCube2, P = 〈4, 2, 1, 1〉

Fig. 1. Typical server-centric topologies represented by pattern vector P

To formulate the topology completely and concisely, 4 parameters are chosen
for pattern vector. In the bottom right of Fig. 1(a), we show the basic building
block, which contains a mini-switch and 4 servers. The port number of mini-
switches which defines the basic recursive unit is denoted as k while the number
of levels in the structure which defines the total recursive layers is denoted as h.
Thus, in Fig. 1(a), k = 4, h = 2. Besides, the recursively scaling out rule for each
topology is defined by the expansion factor and the connection method denoter,
which are denoted as α and β and are explained in Def. 1, 2.
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Definition 1 (Expansion factor) Expansion factor α defines the utilization
rate of the servers available for expansion. It can be proved that for every server-
centric architecture, α is a constant and different server-centric architectures
will have different α, which is given by: α = bnui/naic.

To explain, we use the symbol STi to represent the level-i structure. When STi
scales out to STi+1, we define nai as the number of available servers in STi that
could be used for expansion, while we will use part of them for real expansion, and
the total number of those used servers are defined as nui. Naturally, nai ≥ nui.
We notice that for each topology, the ratio of servers used for expansion and
available servers is surprisingly fixed. Therefore, we can denote a parameter α as
bnui/naic to depict the expansion pattern for each topology abstractly, which
satisfies 0 < α ≤ 1. For example, in Fig. 1(a), every time when HCNi grows to
HCNi+1, α = 3

4 , since three of four available servers will be used for topology
expansion.

Definition 2 (Connection method denotor) Connection method denotor β
defines the connection method of servers, where β = 1 means the connection
type is server-to-server-via-switch, like BCube in Fig. 1(d); and β = 0 means
the connection type is server-to-server-direct, like DCell in Fig. 1(b).

Definition 3 (Pattern vector) A server-centric topology can be uniformly rep-
resented using a Pattern vector P = 〈k, h, α, β〉, where k is the port number of
mini-switches, h is the number of the total level, α is the expansion factor and
β represents the connection method.

To practice, let us first define gi+1 as the number of STi’s in the next recursive
expansion STi+1. Obviously, gi can be calculated by: gi = α · nai−1 + 1. Then
take an eye on Fig. 1 again. Each of the subgraph exhibits a topology with
h = 2. According to their different expansion rules, we can easily calculate
the corresponding pattern vector values. Actually we can use pattern vector to
construct brand new server-centric topologies, which could provide similar QoS
service as other members in the server-centric family. For example in Fig. 2, for
a given Pattern Vector P = 〈3, 3, 13 , 0〉, we can depict a new server-centric DCN.

Server

Switch

Fig. 2. A new-defined server-centric topology, P = 〈3, 3, 1
3
, 0〉
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4 R2-Tree Construction

When we use a pattern vector to depict any server-centric topologies generally,
we can design a more scalable two-layer indexing scheme for efficient query pro-
cessing requirements. We name this novel design as R2-Tree, as it contains two
R-Trees for both local and global indexes. A local R-Tree is an ideal choice for
maintaining multi-dimensional data in each server and a global R-Tree helps
to speed up the query in the global layer. In this section, we first discuss the
hierarchical indexing design for two-dimensional data as an example, and then
extend it to multi-dimensional version.

4.1 Meta-Block, Meta-Server and Representatives

Hierarchical global indexes design can avoid repeated query and achieve bet-
ter storage efficiency. To build a hierarchical global layer, we divide the two-
dimensional indexing space into h+ 1 levels of meta-blocks, defined as Def. 4.

Definition 4 (Meta-block) Meta-blocks are a series of abstract blocks which
are used to stratify the global indexing range. For a topology with P = 〈k, h, α, β〉,
the meta-blocks can be divided into h+ 1 levels.

For a recursively defined structure with pattern vector P = 〈k, h, α, β〉, we divide
the total range in each dimension into gh parts, where gh is the number of STh−1

in STh, and we can get gh
2 meta-blocks on level-(h-1). Similarly, we divide the

range in each dimension of meta-blocks in the second level into gh−1 parts and
for each meta-block in second level, we get gh−1

2 lower level blocks in the next

layer. In this way, we can know that in the level-0, there are
∏h

i=1 gi
2 meta-

blocks. Thus, the total number of meta-blocks is given by Eqn. (1):

Total =

h∑
j=1

h∏
i=j

gi
2 + 1 (1)

Each meta-block is assigned an (h + 1)-tuple [qh, qh−1, ..., q1, q0] in which qi
represents the meta-block’s position in level-i. For example in the left part of
Fig. 3, the level-0 block at the top left corner is assigned with [0, 0, 0], while
the level-1 block at the top left corner is assigned with [1, 0, 0]. To simplify the
partition and search progress, we merge the (h+ 1)-tuple of each meta-block as
a code ID named mid, which can be calculated by Eqn. (2).

midh =

h∑
i=0

qi × i∏
j=0

gj
2

 (2)

Figure 3 is an example for such range division process. Here in the left subgraph,
the lowest level meta-blocks are coded as 0, 1, ..., 143 and the second level meta-
blocks are coded as 144, 153, ..., 279. The highest level meta-block which covers
the whole space is coded as 288.

Now we need to assign some representative servers in charge of each meta-
block from a server-centric DCN structure.
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ST2

ST0

0 1 2

3 4 5

6 7 8

mid = 288

mid = 144

g1 = 3

g2 = 4

Selected meta− blocksfor ST1

Fig. 3. Mapping meta-blocks to meta-servers

Definition 5 (Meta-server) For each level-i structure STi, we can also de-
note it using pattern vector as STi = 〈k, i, α, β〉, which can be an excellent rep-
resentative to manage several corresponding meta-blocks, so it is also named as
meta-server.

Respectively, the right part of Fig. 3 shows a Ficonn2 topology (P = 〈4, 2, 12 , 0〉).
ST2 denotes the meta-server in level-2 while ST1 is the level-1 meta-server and
ST0 is the level-0 meta-server. Figure 3 also shows a mapping scheme to map
the meta-blocks to the meta-servers. At level-i, there are gi STi’s, gi

2 meta-
blocks, so we map gi meta-blocks to each STi. For each STi, we hope to select
meta-blocks sparsely, so we formulate a Mutex Particle Function (MPF) to com-
plete this task, motivated by mutex theory in physics. The mapping function will
be described in Sect. 4.2.

Figure 3 illustrates this mapping rule thoroughly. The meta-block in the
first-layer is mapped to the first-layer meta-server (ST2). Since ST2 contains
4 second-layer meta-server (ST1), the first-layer meta-block contains 42 second-
layer meta-blocks. Therefore each ST1 is in charge of 4 second-layer meta-blocks.
Similarly, each meta-block which is mapped to the first ST1 can be divided into
32 parts and be mapped to the third-layer meta-server (ST0) accordingly. After
mapping meta-blocks to meta-servers, as meta-servers are just virtual nodes, we
should select physical servers as representatives of meta-servers.

Definition 6 (Meta-server representative) To achieve fast routing process,
we select the connecting servers between STi−1’s as the representatives of STi.

In Fig. 3, the grey nodes are the representatives for ST0 and the black nodes are
the representatives for ST1. Selecting representatives in this method guarantees
that the query in the upper layer of the meta-blocks can be forwarded to the
lower layer in the least number of hops, and more than one representative to a
meta-server guarantees a degree of redundancy.
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Algorithm 1: Mutex Particle Function (MPF)

Input: A meta-server STi

Output: Si: a set of meta-blocks which are mapped to meta-server STi

1 Si = {∅};
2 Select a meta-block in this layer randomly and add it into Si, and set the

centroid of this mapped set as the center of this node;

3 while |Si| <
∏h

j=i+1 gj do

4 From the set of the non-mapped meta-blocks, select one whose centroid is
mostly far away from the centroid of the mapped set. Add this node into
the mapped set of this meta sever, and re-calculate the centroid of the
mapped set;

4.2 Mutex Particle Function

Once the queries appear intensively in a certain area, all the nearby meta-blocks
will be searched at a high frequency. Therefore, a carefully designed mapping
scheme is needed to balance the request load. We propose Mutex Particle Func-
tion (MPF) in this subsection. As its name illustrated, we regard the meta-blocks
assigned to the same meta-server as the same kind of particles and like mutual
exclusion of charges, same kind of particles should be mutually exclusive with
each other. That means in two-dimensional space, the distance between the same
kind of meta-blocks should be as far as possible. Every time we select a meta-
block to a meta-server, we choose the furthest one from the centroid of the
meta-blocks which have been chosen. Algorithm 1 describes MPF in detail.

4.3 Publishing Local Tree Node

In the process of building R2-Tree indexes, we first build local R-Tree for every
server based on their local data. Then to better locate the servers, information
about local data and the corresponding server will be published to global index
layer. We first select the nodes to be published from the local R-Trees, which
starts from the second layer of local R-Tree to the end layer where all the nodes
are leaf nodes. For the layer before the end layer, we select the nodes which have
no published ancestors with a certain probability to publish. For the end layer,
we publish all the nodes whose ancestors have not been published. In this way,
we guarantee the completeness of the publishing scheme. Moreover, we make
sure that the nodes in the higher layer have a higher possibility to be published
so to reduce the storage pressure in global index layer. After the selection of
the local R-Tree node, we find the minimum potential indexing range of a meta-
server which covers this selected node exactly. Then, we publish the local R-Tree
node to the corresponding representatives in the format of (mbr, ip), where mbr
is the minimum bounding rectangle of the local R-Tree node, and ip means the
ip address of the server where this node is stored. For each server, it will build a
global R-Tree based on all the R-Tree nodes published to it. Global R-Tree can
accelerate the speed in searching global indexes and forward the query.
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4.4 Multi-Dimensional Indexing Extension

The R2-Tree indexing scheme can also be extended to multi-dimensional space.
In our design, multi-dimensional indexing takes advantage of the recursive fea-
ture of the topologies to divide the hypercube space and let one level of the
structure be in charge of one dimension. In this paper, we will not discuss cir-
cumstance where the data dimension is extremely high like image data. This may
be solved by LSH-based algorithms, but it is another story from our bottleneck-
avoidable two-layer index framework.

Potential Index Range. For a server-centric DCN structure with h levels,
we can construct an (h+ 1)-dimensional indexing space. If the dimension of the
data exceeds h + 1, methods like principle component analysis (PCA) can be
applied to reduce the index dimension. We assign one level of the structure to
maintain the global information in one dimension. Since the number of parts
in each dimension should be equal to the number of the lower layer structures
STi−1 in STi which is denoted by gi, we divide the indexing space in dimension i
into gi parts (k for dimension 0) and every STi−1 in this level will be responsible
for one of them. Figure 4 shows the indexing design in detail.

4.5 Potential Indexing Range

As we have mapped several meta-blocks to a meta-server, the potential index-
ing range of a meta-server is the sum of ranges of those meta-blocks. Taking
uniformly distributed data as an example, since there are

∏h
j=i+1 gj

2 meta-
blocks in level-i, the two-dimension boundary ([l0, u0], [l1, u1]) can be divided

into
∏h

j=i+1 gj segments for each dimension in level-i. The range of the highest
level meta-block is pirh = ([l0, u0], [l1, u1]). The range of meta-blocks for each
dimension is given by:

piri0 =

[
li0 + (qi mod gi+1)× ui0 − li0

gi+1
, li0 + (qi mod gi+1 + 1)× ui0 − li0

gi+1

]
piri1 =

[
li1 + (bqi ÷ gi+1c)×

ui1 − li1
gi+1

, li1 + (bqi ÷ gi+1c+ 1)× ui1 − li1
gi+1

]
(3)

In Eqn. (3), the subscript of pir means the level of the meta-block and 0 means
the first dimension while 1 means the second dimension. ui and li represent
the boundary of the higher level meta-block which just covers it, qi means the
position of meta-block in level-i and i satisfies 0 ≤ i < h.

If data is not uniformly distributed, we use the Piecewise Mapping Function
(PMF) [19] method to balance the skew data. The goal of PMF is partitioning
the data evenly into some buckets. We use the cumulative mapping to evenly
divide the data into buckets by using hash function.

In HCN2, with P = 〈4, 2, 34 , 0〉 which is shown in Fig. 4, the potential index-
ing range of each server is represented by the purple cuboid. The servers in the
level-0 structure will be combined together and ST0 will manage the potential
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Switch

Server

The first dimension

The second dimension

The third dimension
(0, 0, 0) (0, 0, 1)

Fig. 4. Potential Indexing Range of HCN2

indexing range represented by the blue long cuboid. The level-1 structure ST1
consists of 4 ST0’s and will manage the green cuboid consisting of 4 blue cuboids.
At the highest level, the data space it manages will be the whole red cuboid.

Suppose the indexing space is bounded by B = (B0, B1, ..., Bh), and Bi is
[li, li + wi], i ∈ [0, h], the potential range of server s is pir(s). Similar to meta-
blocks, each meta-server is also assigned an (h+ 1)-tuple [ah, ah−1, ..., a1, a0] in
which ai represents the meta-block’s position in level-i.

Lemma 1 For a server s which is represented by tuple [ah, ah−1, ah−2, ..., a0],
its potential indexing range of pir is:

pir (s) = pir ([ah, ah−1, ..., a0])

=

([
l0 + a0

w0

k
, l0 + (a0 + 1)

w0

k

]
, ...,

[
lh + ah

wh

gh
, lh + (ah + 1)

wh

gh

])
(4)

Publishing Scheme. Each server builds its own local R-tree to manage the
data stored in it. Meanwhile, every server will select a set of nodes Nk =
{N1

k , N
2
k , ..., N

n
k } from its local R-tree to publish them into the global index.

Similar to the two-dimension situation, the format of the published R-tree node
is (mbr, ip). ip records the physical address of server and mbr represents the
minimum bounding rectangle of the R-tree node. For each selected R-tree node,
we will use center and radius as the criteria for mapping. We set a threshold
named Rmax, to compare with the given radius. Given an R-tree node to be
published, we first calculate the center and radius. Then, the node will be pub-
lished to the server whose potential index range covers the center. If radius is
larger than Rmax, the node will be published to those servers whose potential
indexing range intersects with the R-tree node range.

5 Query Processing

5.1 Query in Two-Dimensional Space

Point query. The point query is processed in two steps: (1) The first step
happens among the meta-servers to locate the servers which may possibly store
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Level2

Level1

Level0

point query

Fig. 5. An example of the point query process in R2-Tree

the data. The query point Q(x0, x1) will be first forwarded to the nearest level-
h level representative which represents the largest meta-block. Then the query
will be forwarded to level-(h-1) representative with corresponding meta-block
whose potential indexing range covers Q. The process goes on until the query is
forwarded to a level-0 structure. All the representatives which receive the query
will search their global R-Trees and forward the query to local servers. (2) In
the second step, the servers will search their local R-Trees and return the result.
In all, only (h+ 1) representatives will be searched in total.

Figure 5 shows a point query example in the global R-Tree on the same
topology shown in Fig. 3. Traditionally, we need to perform the query in all
servers in the DCN. However, if the hierarchical global indexes are used, we
only need to perform query in much fewer servers. For example, for the point
query represented by the purple node, the querying process will go through the
global index from Level2 to Level0 with 3 representatives, and then the query
will be forwarded to the servers who possibly store the result. Therefore, from
this case, we can see the effectiveness of this indexing scheme.

Range Query. The range query is similar to point query which is also a two-
step processing. Given a range query R([ld0

, ud0
], [ld1

, ud1
]), as the same as the

processing in point query, we begin query from the largest meta-server to the
smallest meta-server which can just cover the range R and then the forwarded
servers will search their local R-Trees to find the data. The only difference is
that in point query the smallest meta-server must be a physical server.

5.2 Query in High-Dimensional Space

Point Query. The point query is a two-step processing. Given a point query
Q(x0, x1, x2, ..., xd), we first create a super-sphere centered at Q with radius
Rmax. We search all the servers whose potential indexing range intersects with
the super-sphere. To increase query speed, we forward the query in parallel.
After getting the R-tree nodes which cover the point query, we forward the
query to the servers which contain these nodes locally.

Range Query. The range query R([ld0 , ud0 ], ..., [ldh
, udh

]) will be sent to all
the servers whose potential indexing range intersects with range query R. These
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servers will search their global indexes and find the corresponding R-Tree nodes.
The query will be forwarded to those local servers. The cost of range query is
less than directly broadcasting to all the servers.

6 Experiments

To validate R2-Tree indexing scheme, we choose three existing server-centric
data center network topologies including DCell (P = 〈4, 2, 1, 0〉), Ficonn (P =
〈4, 2, 12 , 0〉), HCN (P = 〈4, 2, 34 , 0〉) to test the performance of our indexing
scheme with them on the platform of Amazon’s EC2. We implement our R2-
Tree in Python 2.7.9. We use in total 64 instance computers. Each of them has
two-core 2.4GHz Intel Xeon E5-2676v3 processor, 8GB memory and 8GB EBS
storage. The bandwidth is 100 Mbps. The scale of the DCN topologies ranges
from level-0 to level-2. The experiments involve 3 two-dimensional datasets:
(1) Uniform 2d which follows uniform distribution, (2) Zipfian 2d which follows
zipfian distribution, and (3) Hypsogr which is a real dataset obtained from
the R-Tree Portal 1 and one uniform three-dimensional datasets. The detailed
information of our experiments is shown in Table 2.

Table 2. Experiment Settings

Parameter Values

DCN topologies DCell, Ficonn, HCN
Structure level 0, 1, 2
Dimensionality 2, 3
Distribution Uniform, Zipfian, Real
Uniform Datasets Uniform 2d, Uniform 3d
Skew Datasets Zipfian 2d, Hypsogr
Query Method point query, range query, centralized point query

Our experiments are conducted as follows. For each DCN topology, we gen-
erate 2, 000, 000 data points for each server. We execute 500 point queries and
100 range queries and record the total query time as the metric for each dataset.
Additionally, to test the effectiveness of the Mutex Particle Function, we also
perform centralized 500 point queries where all the query are confined to a
certain area of the whole data space. By comparing the query time with RT-
HCN [12], we show the superiority of our global R-Tree design. Besides, by
counting the hop number for each point query and the average number of global
indexes, we explain a trade-off between the query time and the storage efficiency.

In R2-Tree, we propose hierarchical global indexes for two-dimensional data
and divide the potential indexing range evenly for three-dimensional data. In
Fig. 6, we show the point query performance of R2-Tree in three different
datasets. Since it is impossible to manipulate hundreds of thousands of servers in

1 http://chorochronos.datastories.org/?q=node/21
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Fig. 6. Point query performance

the experiments and a certain number of servers will be representative enough,
the server number of DCell scales from 4 to 20, while the server number of
Ficonn scales from 4 to 12 and 12 to 48, and for HCN, the server number
scales from 4 to 16 and from 16 to 64. The two parallel columns represent the
query time for the normal point query and the centralized point query respec-
tively when the server number and the type of dataset are fixed. Based on the
result that the query time for the centralized and non-centralized point query
is close to each other when the other parameters are fixed, we show that the
Mutex Particle Function balances the request load effectively.

We observe from Fig. 6 that the query time increases as the DCN structure
scales out. By counting the global indexes stored in representatives in different
levels, we notice an unbalance of the global information. The representatives in
higher level tend to store more global indexes because they have larger potential
indexing range. Since most of the chosen-to-published R-Tree nodes are from
upper layer, the minimum bounding boxes are larger and will be more likely
to be mapped to the meta-blocks which have larger potential indexing range.
Nonetheless, in this way, we achieve higher storage efficiency since we do not
need to store a lot of global information in each server. Besides, the global
R-Tree helps to alleviate this bottleneck to a great extent. Among the three
different datasets, we can see that the query time is the shortest for Uniform
dataset and longest for Zipfian dataset.
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The range query in Fig. 7 also shows a same tendency of query time increase
as the structure scales out. From the comparison of query time between different
topologies, we find that for the same level number and the same kind of dataset,
DCell performs the best while Ficonn performs the worst. We calculate the
number of hops among the servers for a point query to explain the inner rea-
son. In Fig. 8, we can see that the number of hops increases as the structure
scales out. For the same level structure, the number of hops for DCell is the
least and the hop number for Ficonn is the largest. This can be explained by
expansion factor α easily. Figure 9 explains the trade-off between query time
and storage space clearly. Larger α means that the connection between servers
is more compact, and the number of physical hops will reduce and therefore
achieve better time efficiency. However, the store efficiency will decrease corre-
spondingly since each server stores more global information in different levels.
By Comparing the query hop numbers for 2d and 3d data in Fig. 8, we can
see the efficiency for the hierarchical global indexing design. Since the potential
indexing range is of different size, we only publish the tree node to the just-cover
meta-block. This mechanism avoids the repeated query effectively, and there-
fore reduce the total query time. Besides, in Fig. 10, we compare the query time
of R2-Tree to RT-HCN [12]. Global R-Tree accelerates the global query and
PMF helps to balance the request load. Therefore, R2-Tree shows superiority
over RT-HCN [12].
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7 Conclusion

In this paper, we propose an indexing scheme named R2-Tree for multidimen-
sional query processing which can suit most of the server-centric data center
networks. To better formulate the topology of server-centric DCNs, we propose
a pattern vector P through analyzing the recursively-defined feature of these
networks. Based on that, we present a layered mapping method to reduce query
scale by hierarchy. To balance the workload, we propose a method called Mutex
Particle Function to distribute the potential indexing range. We prove theoreti-
cally that R2-Tree can reduce both query cost and storage cost. Besides, we take
three typical server-centric DCNs as examples and build indexes on them based
on Amazon’s EC2 platform, which also validates the efficiency of R2-Tree.
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